Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Class: Biology 113 – Biology for General Education Common Core No.: NMCCN BIOL 1114 Faculty: Todd Kuykendall for Anne Luna and Lana Powell

Assessment Results How Results Will Be Used (Optional) Competencies **Assessment Procedures** (Learning Outcomes Being (Process/Instrument named or Recommendations/Goals/ **To Make Improvements** described - rubric attached) Measured) Priorities 1. Students will describe the process of scientific inquiry. Students work through problems In-class student work showed We used a minimum of 70% for Students should: via the Scientific Method and improvement during the course in each competency as the standard a. Understand that scientists rely correlate historical scientific their in-class exercises, problem that we aspired to reach and we on evidence obtained from sets, lab activities, and current exceeded that goal in each of the investigations to important observations rather than concepts in Biology (pre- and postbiology topics. five competencies. All of the authority, tradition, doctrine, test taken by 72 students in the competencies surpassed the or intuition. On the exit assessment test. spring semester) minimum and we feel quite b. Students should value science students results were as follows: confident that these competencies as a way to develop reliable are being taught to the students. knowledge about the world. Comp. 1 = 90% (slightly down from As of now, no recommendations 93% last year) are being made for improvement as of this time. 2. Students will solve problems scientifically. The scientific method is used by Comp. 2 = 89% correct (up from Students should: students to solve problems and 87% last year) a. Be able to construct and test make observations using tools such hypotheses using modern lab as microphones, electronic scales, equipment (such as Punnett Squares, hypothesis are microscopes, scales, computer constructed and tested through lab technology) and appropriate reports, problem sets, quizzes and quantitative methods. lecture exams. b. Be able to evaluate isolated observations about the physical universe and relate them to hierarchically organized explanatory frameworks (theories).

Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Page 2 of 3 Course: Biology 113

Common Core No.: NMCCCN BIOL 1114

Competencies	Assessment Procedures	Assessment Results	How Results Will Be Used	(Optional)
(Learning Outcomes Being	(Process/Instrument named or		To Make Improvements	Recommendations/Goals/
Measured)	described – rubric attached)			Priorities
3. Students will communicate				
scientific information.	Students communicate effectively	Comp. 3 = 87% (down from 97%		
Students should:	about science through lab reports ,	last year)		
communicate effectively about	Biology in the news (current			
standard format and explain	events) and m-class presentations			
basic scientific concepts.				
procedures, and results using				
written, oral, and graphic				
presentation techniques.)				
4. Students will apply				
quantitative analysis to scientific	Students perform calculations	Comp 4 = 87% (up from 83% last		
problems.	involving metrics, plant growth,	year)		
a Select and perform appropriate	through lab reports problem sets			
quantitative analyses of scientific	guizzes and lecture exams.			
observations.	· · · · · · · · · · · · · · · · · · ·			
b. Show familiarity with the metric				
system, use a calculator to perform				
appropriate mathematical				
operations, and present results in				
tables and graphs.				

Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Page 3 of 3 Course: Biology 113

Common Core No.: NMCCCN BIOL 1114

 5. Students will apply scientific thinking to real world problems. Students should: a. Critically evaluate scientific reports or accounts presented in the popular media. b. Understand the basic scientific facts related to important contemporary issues (e.g., global warming, stem cell research, cosmology), and ask informed questions about those issues. 	Students critically evaluate current developments in biology, incorporating basic scientific fats to make their evaluation through Biology in the news, in-class presentations and class discussions A final assessment quiz that has specific ties to each of the five competencies is given at the end of the semester	Comp. 5 = 92% correct (down from 97% last year)	
Enu – Laboratory Science			

Faculty Member Completing Assessment:	Todd Kuykendall	June 2013
	Name	Date

All class assessment forms are due to your division chair by June 30 or as designated by the Division Chair. All assessments are due from the Division Chairs to the Assessment Committee Chair by July 30.

Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Class: Chemistry 113 – Chemistry for General Education Common Core No.: NMCCN CHEM 1114 Faculty: Michelle Hughes

Competencies	Assessment Procedures	Assessment Results	How Results Will Be Used	(Optional)
(Learning Outcomes Being	(Process/Instrument named or		To Make Improvements	Recommendations/Goals/
Measured)	described – rubric attached)			Priorities
Students were assessed in regard	One 16 week CHEM 113 course	Spring 13	With the exception of Objectives 1	
to the following objectives. By the	was assessed during the Spring	 Objective 1 = 64.3% 	and 6 in both classes, the objective	
end of the course, the student	2013 semester. Student	• Objective 2 = 89.3%	averages were above or at least	
should be able to achieve a	knowledge was assessed through	 Objective 3 = 75.0% 	the 70% proficiency mark.	
minimum of 70% proficiency in the	the comprehensive final which	 Objective 4 = 89.3% 		
following areas:	consisted of 100 multiple choice	 Objective 5 = 92.9% 	I will work to ensure that the	
	questions. Students were assessed	• Objective 6 = 54.3%	topics covered in the final exam	
1. Develop an understanding	using 25 of these questions.		are thoroughly discussed in lecture	
of the history of chemistry			next semester. I will incorporate	
and the development of			more diagrams and explanations	
Chemistry as a science.			and ensure students thoroughly	
2. Classify matter as an			understand the material being	
element, compound, or			presented.	
Describe the arrangement				
5. Describe the analigement				
narticles and extend that				
information to				
understand differences in				
mass, stability, and				
reactivity of elements.				
4. Use the Periodic Table of				
Elements and distinguish				
between metals, non-				
metals, and metalloids as				
well as outer shell				
(valence) electron				
arrangement.				
5. Relate quantitative				
aspects of reaction and				
stoichiometry.				

Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Page 2 of 2 Course: Chemistry 113

Common Core No.: NMCCN CHEM 1114

Competencies	Assessment Procedures	Assessment Results	How Results Will Be Used	(Optional)	
(Learning Outcomes Being	(Process/Instrument named or		To Make Improvements	Recommendations/Goals/	
Measured)	described – rubric attached)			Priorities	
 Describe three broad categories of biochemicals: carbohydrates, lipids, and proteins. 					

Faculty Member Completing Assessment: Michelle Hughes ______ June 2013______

Name

Date

Clovis Community College Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Class: Geology 113 – Physical Geology Common Core No.: NMCCN GEOL 114

Faculty: Todd Kuykendall for Harry Pomeroy

Competencies	Assessment Procedures	Assessment Results	How Results Will Be Used	(Optional)
(Learning Outcomes Being	(Process/Instrument named or		To Make Improvements	Recommendations/Goals/
Measured)	described – rubric attached)			Priorities
Measured) 1. Students will describe the process of scientific inquiry. Students should: a. Understand that scientists rely on evidence obtained from observations rather than authority, tradition, doctrine, or intuition. b. Students should value science as a way to develop reliable knowledge about the world.	described – rubric attached) Students will work through problem using the Scientific Method, specific historical examples will also be investigated that correlate to important concepts in Geology (e.g. – theories of geologic phenomenon, origin of the Earth) – In-class exercises, quizzes, lecture exams, labs	In-class student work showed improvement during the course in their in-class exercises, problem sets, lab activities, and discussion of current events in Geology as indicated by every one of the competencies meeting our desired minimum score of 70%. On the exit assessment test, given to 13 students during the fall and 14 students during the spring, results were as follows: Fall Comp. 1 = 85% Spring Comp. 1 = 79%	We use a minimum of 70% correct for each competency as the standard that we aspire to reach. Not all competences reached the benchmark during the 2012-2013 academic year (Comp 2 and 5 during the spring). Part of this was due to low participation rates in these courses and overall our science courses saw a decrease in assessment results. One of the main goals of the 2013-2014 academic year will be to overhaul our assessment approach and make sure the assessment method is adequately assessing these competencies.	Priorities

Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Page 2 of 3 Course: Geology 113 – Physical Geology

Common Core No.: NMCCN GEOL 1114

<u>Competencies</u>	Assessment Procedures	Assessment Results	How Results Will Be Used	(Optional)
(Learning Outcomes Being	(Process/Instrument named or		To Make Improvements	Recommendations/Goals/
Measured)	described – rubric attached)			Priorities
2. Students will solve problems	The scientific method will be used	Fall		
scientifically.	to solve problems and problems	Comp. 2 = 77%		
Students should:	will be solved in the following	Spring		
a. Be able to construct and test	areas:	Comp. 2 = 58%		
hypotheses using modern lab	present is the key to the past			
equipment (such as	exercises, geologic structure			
microscopes, scales, computer	formation – lab reports, problem			
technology) and appropriate	sets, quizzes, lecture exams			
quantitative methods.				
b. Be able to evaluate isolated				
observations about the				
physical universe and relate				
them to hierarchically				
organized explanatory				
frameworks (theories).				
3. Students will communicate	Students will submit lab reports	Fall		
scientific information.	and discuss current topics in	Comp. 3 = 70%		
Students should:	Geology – reports and	Spring		
Communicate effectively about	presentations on geological topics	Comp. 3 = 72%		
science (e.g., write lab reports in	such as local topography,			
standard format and explain	hydrology, volcano formation,			
basic scientific concepts,	tsunamis			
procedures, and results using				
written, oral, and graphic				
presentation techniques.)				

All class assessment forms are due to your division chair by June 30 or as designated by the Division Chair. All assessments are due from the Division Chairs to the Assessment Committee Chair by July 30.

Core Competencies Assessment 2012-2013—Area III: Laboratory Science

Page 3 of 3 Course: Geology 113 – Physical Geology

Common Core No.: NMCCN GEOL 1114

<u>Competencies</u>	Assessment Procedures	Assessment Results	How Results Will Be Used	(Optional)
(Learning Outcomes Being	(Process/Instrument named or		To Make Improvements	Recommendations/Goals/
Measured)	described – rubric attached)			Priorities
4. Students will apply	Students will perform calculations	Fall		
quantitative analysis to scientific	throughout the course in areas	Comp. 4 = 77%		
problems.	including earthquake intensity,	Spring		
Students should:	isotope half-life, radiocarbon	Comp. 4 = 86%		
a. Select and perform appropriate	dating			
quantitative analyses of scientific				
observations.				
b. Show familiarity with the metric				
system, use a calculator to perform				
appropriate mathematical				
operations, and present results in				
tables and graphs.				
C. Students will early scientific	Current tenies in Coolegy	Fall		
5. Students will apply scientific	through locture and student	Fall Comp E = 70%		
Students should:	discussion	Spring		
a Critically evaluate scientific		Comp 5 = 65%		
reports or accounts presented in		comp. 5 - 6576		
the popular media.				
b. Understand the basic scientific				
facts related to important				
contemporary issues (e.g., global				
warming, stem cell research,				
cosmology), and ask informed				
questions about those issues.				
End – Laboratory Science				

Faculty Member Completing Assessment: Todd Kuykendall

June 2013

Name

Date

All class assessment forms are due to your division chair by June 30 or as designated by the Division Chair. All assessments are due from the Division Chairs to the Assessment Committee Chair by July 30.